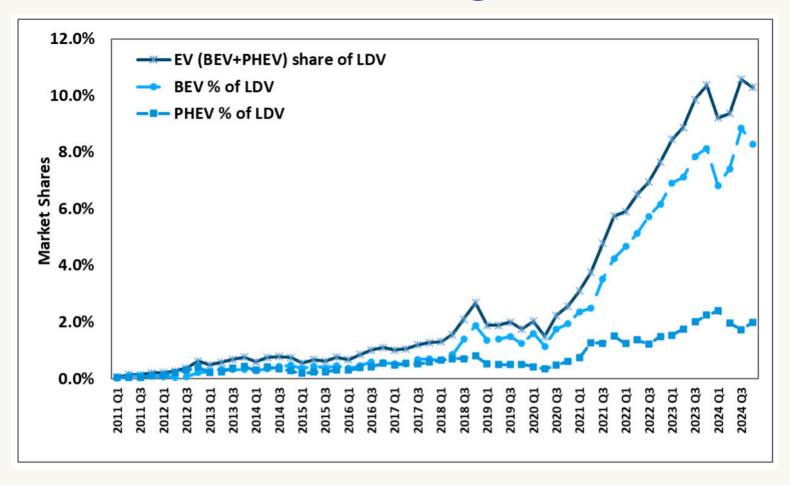
SMART CHARGING

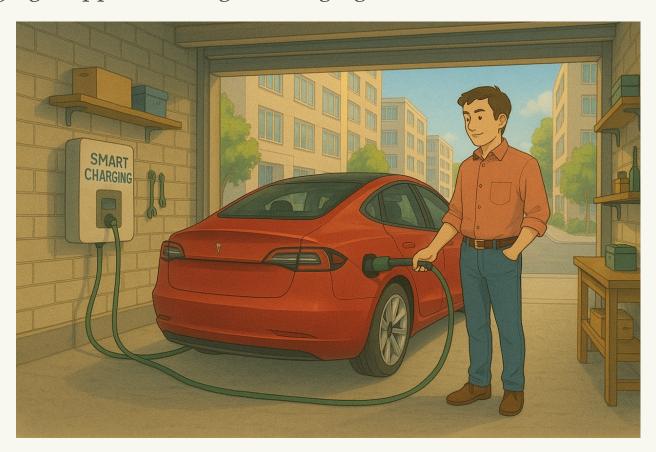
Grid-Integration of Electric Vehicles

Consumer Preferences for Smart Charging Programs

Pingfan Hu, Brian Tarroja, Matthew Dean, Kate Forrest, Eric Hittinger, Alan Jenn, John Paul Helveston

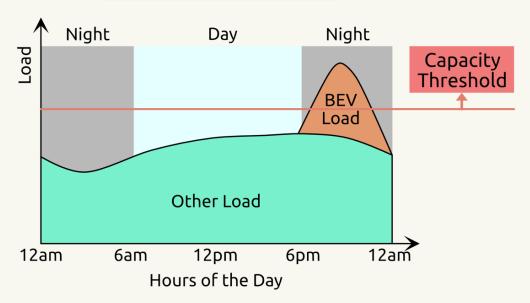

About Me

- My name is Pingfan Hu, a PhD Candidate at George Washington University, supervised by Dr John Helveston
- Research focuses:
 - 1. EV grid integration
 - 2. Consumer behavior
 - 3. Research software development
- For more infomation, visit pingfanhu.com

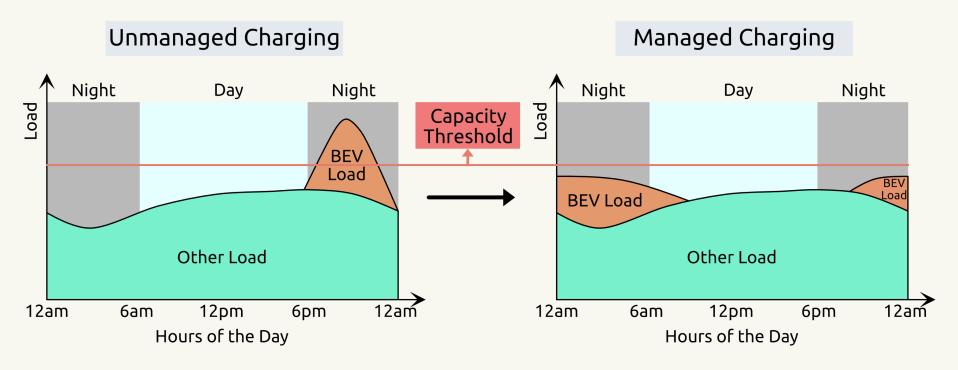

EV sales in US reaching ~10% of sales

Source: Argonne National Lab, www.anl.gov/ev-facts/model-sales

Background

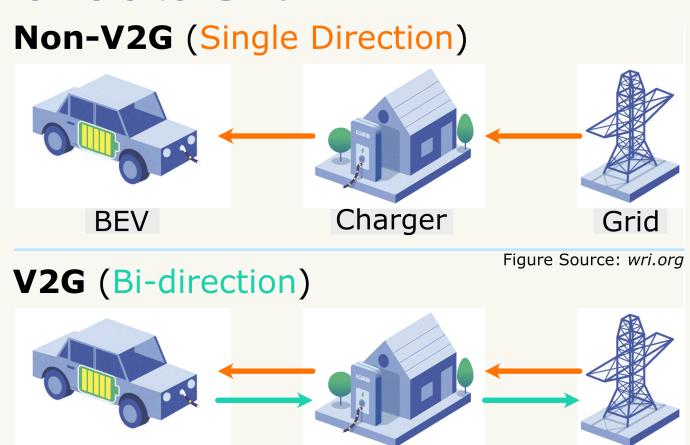

- Unmanaged BEV charging is becoming a problem to the grid.
- Managed charging is cheaper and smoothes out the grid load.
- Smart charging: Supplier-Managed Charging (SMC) and Vehicle-to-Grid (V2G).

SMC - Supplier Managed Charging


- SMC smooths out overnight EV charging demand.
- Electricity demand is controlled below capacity threshold.
- It saves money and reduces pollution.

Unmanaged Charging

SMC - Supplier Managed Charging


- SMC smooths out overnight EV charging demand.
- Electricity demand is controlled below capacity threshold.
- It saves money and reduces pollution.

Managed charging avoids overload caused by BEV charging.

V2G - Vehicle-to-Grid

BEV

In a V2G event, BEVs can charge the grid when necessary. BEVs are charged back eventually. Owners earn money.

V2G Device

Grid

Smart charging depends on enrollment.

Literature Review

- 1. A study by Wong et al. (2023) examined **incentives** affect the EV owners' acceptance, but EV ownership is only 19%.
- 2. A study by Philip and Whitehead (2024) found range anxiety matters, but EV ownership is only 1.28%.
- 3. Another study by Huang et al. (2021) indicates the importance of **fast charging**, but the sample size is only 157.

None of them have demographics data to study heterogeneity.

We need high EV ownership & large sample size, and consider heterogeneity.

Research Questions

- 1. **Sensitivity**: How do changes in smart charging program **features** influence BEV owners' willingness to opt in?
- 2. Enrollment Rate: Under what combinations of features will BEV owners be more willing to opt in to smart charging programs?

Conjoint survey to collect BEV owners' willingness.

Multinomial logit model for utility simulations.

Survey Design with formr

Conjoint Questions

- 1. Monetary Incentives
- 2. Charging Limitations
- 3. Flexibility

Demographic Questions

- 1. BEV Ownership
- 2. Personal Info
- 3. Household Info

Conjoint Question Explained

A Sample Conjoint Question

- 1. Provide respondents with different **sets** of attributes.
- 2. Observe choices across random sets.
- 3. Estimate **utility** of each attribute.

SMC Programs

Attributes

No.	Attributes	Range	
1	Enrollment Cash	\$50 to \$300	
2	Monthly Cash	\$2 to \$20	
3	Monthly Override	0 to 5	
4	Min Battery	20% to 40%	
5	Guaranteed Battery	60% to 80%	

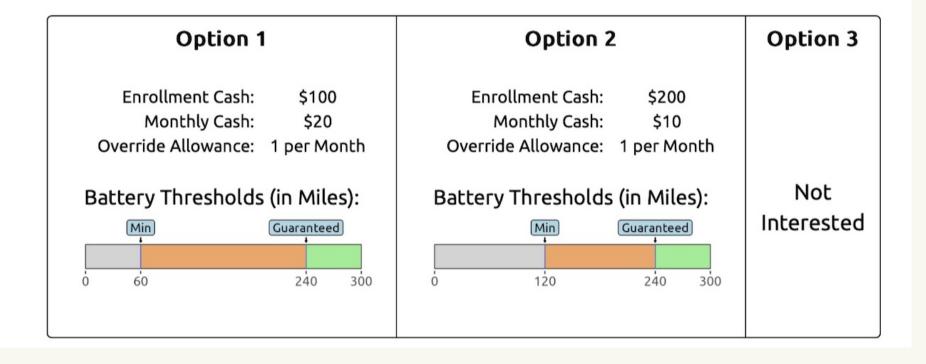
Sample Program

Attributes	Values				
Enrollment Cash	\$300				
Monthly Cash	\$20				
Monthly Override	5				
Min 0 80	Guaranteed 160 200 miles				
(Range determined by stated vehicle they own)					

V2G Programs

Attributes

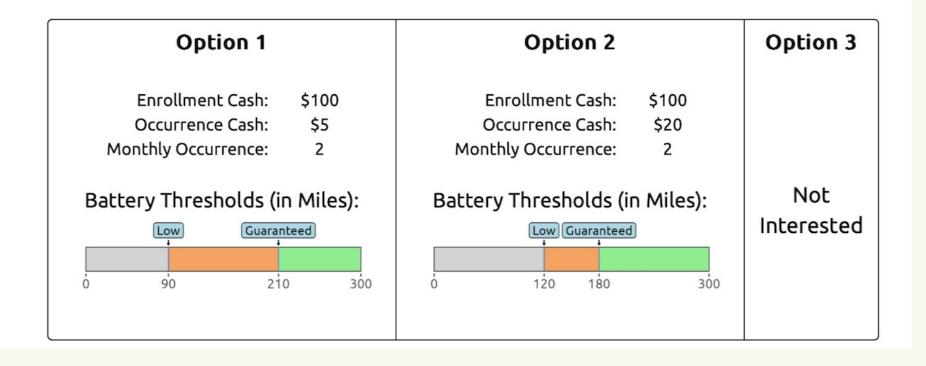
Range	
to \$300	
o \$2 0	
4	
to 40%	
to 80%	


Sample Program

Attributes	Values				
Enrollment Cash	\$300				
Occurrence Cash	\$20				
Monthly Occurrence	1				
Low	Guaranteed				
0 80	160 200 miles				
(Range determined by stated vehicle they own)					

Sample SMC Question

(1 of 6) If your utility offers you these 2 SMC programs, which one do you prefer? (Your BEV has maximum range of 300 miles.)


Access the SMC Attributes

Sample V2G Question

(1 of 6) If your utility offers you these 2 V2G programs, which one do you prefer? (Your BEV has maximum range of 300 miles.)

Access the V2G Attributes

Survey Fielding - 1356 in Total

Learn more

Share

Comment

EV Charging Survey

ր^Դ Like

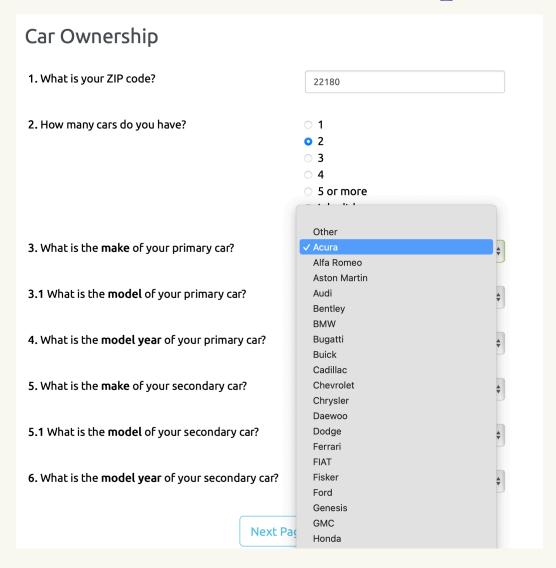
formr survey framework....

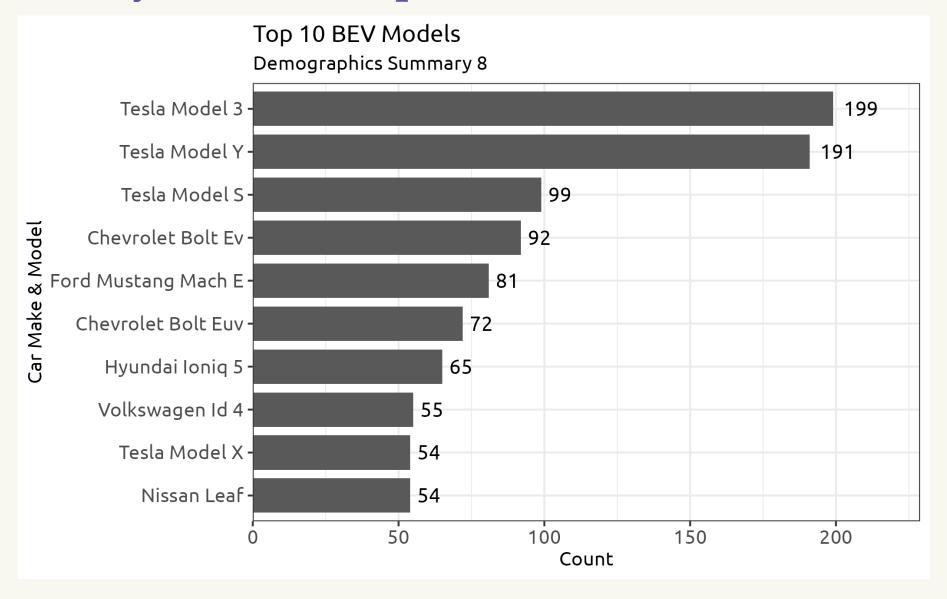
Meta Ads: Voluntary participants

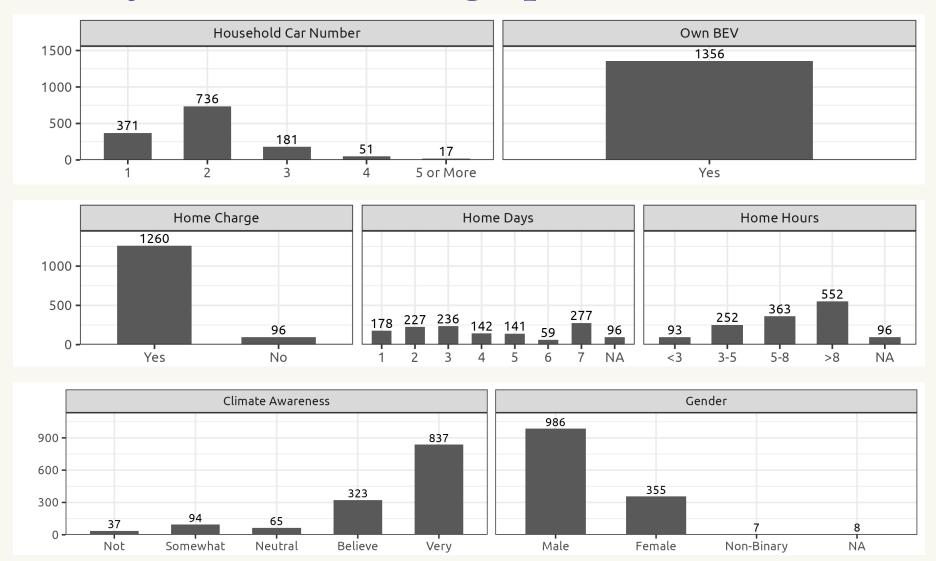
- 803 responses
- March to July in 2024

Dynata Recruitment: Paid survey

- 553 responses
- September to November in 2024





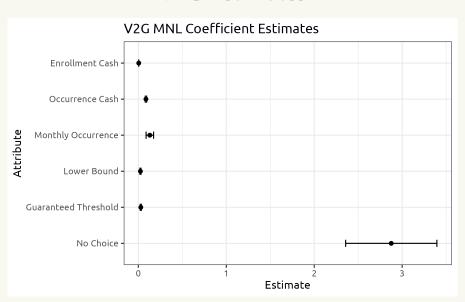

Survey Question - Car Ownership

Survey Results - Top 10 BEV

Survey Results - Demographics

Survey Results - Willingness to Participate

Multinomial Logit Models


$$u_j = v_j + \epsilon_j = \beta' x + \epsilon_j$$
 $P_j = \frac{e^{v_j}}{\sum_{k=1}^J e^{v_k}}$

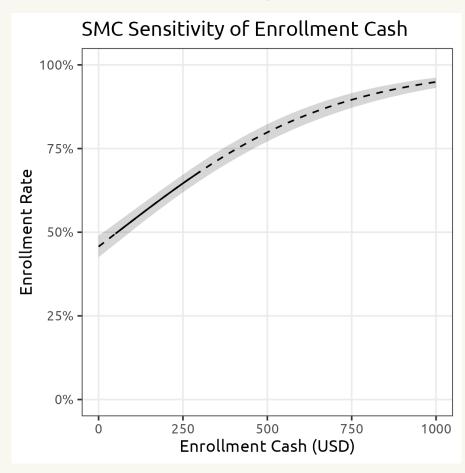
Utility esimated using maximum likelihood estimation (MLE).

SMC Estimates

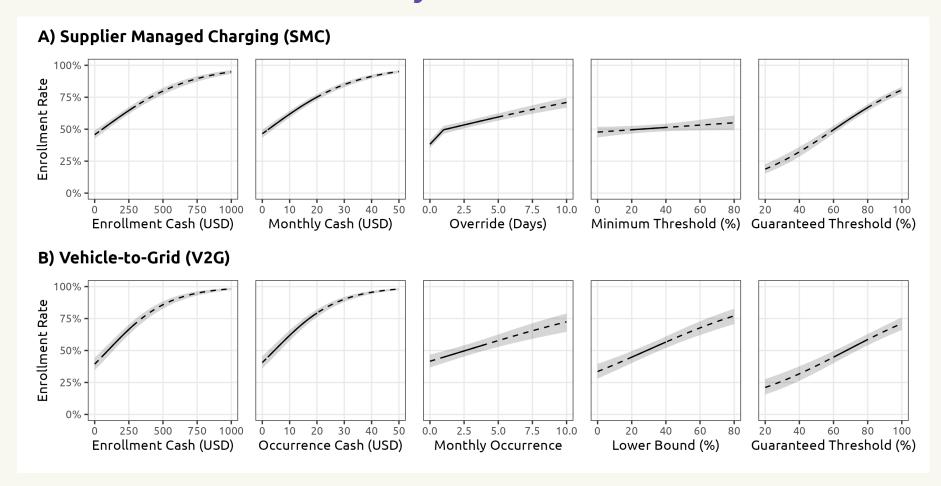
SMC MNL Coefficient Estimates Enrollment Cash Monthly Cash Override Days Override Flag Min Threshold No Choice O 1 2 3 Estimate

V2G Estimates

Without compensation, users will not participate.


Enrollment Sensitivity

Baseline Simulation


Choice between "None" and this program:

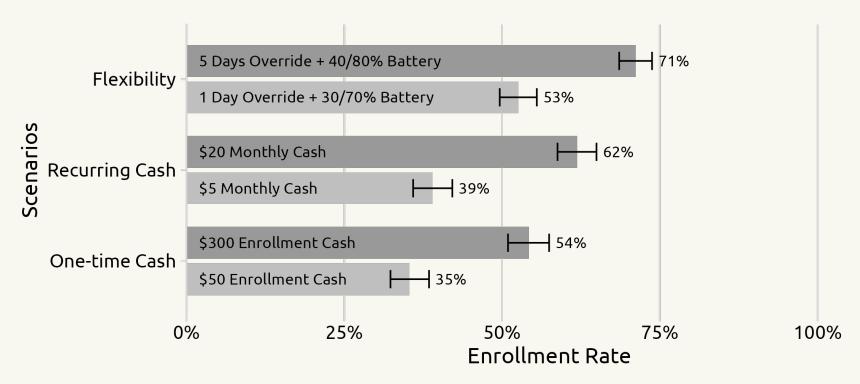
Attributes	Values
Enrollment Cash	\$0 - \$1000
Monthly Cash	\$2
Monthly Override	1
Min Guarantee	d
0 40 120	200 miles

Sensitivity Plot

Enrollment Sensitivity

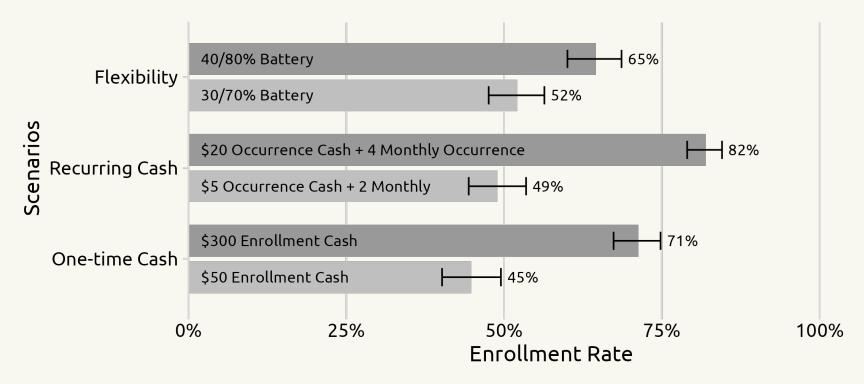
- 1. Steeper slope indicates higher sensitivity.
- 2. Diminishing returns exist.

Equivalencies of 5% Enrollment Increase

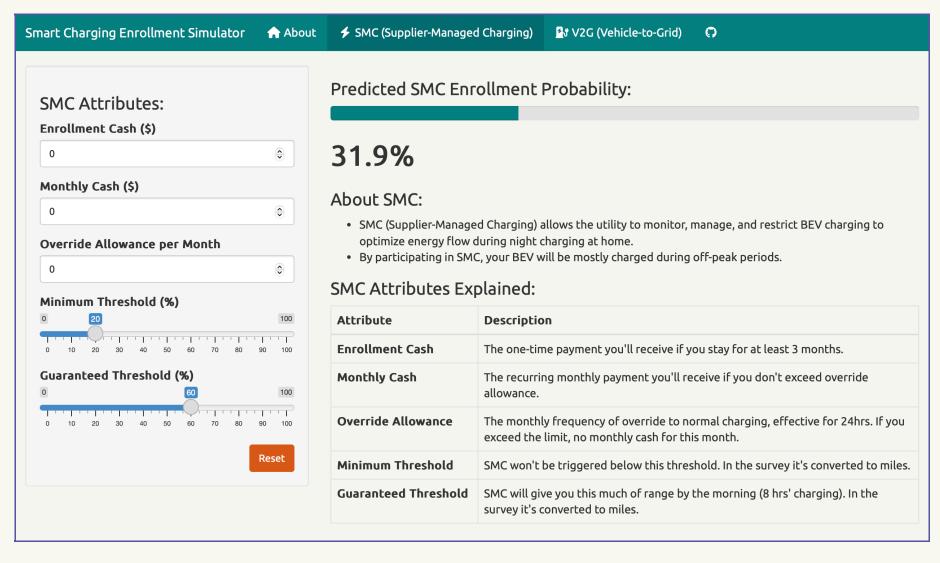

SMC V2G

Attribute	Equivalence Value	Unit	Attribute	I
Enrollment Cash	64.7	\$	Enrollment Cash	
Monthly Cash	3.2	\$	Occurrence Cash	
Override Days	2.0	Days	Monthly Occurrence	
Minimum Threshold	54.8	%	Lower Bound	
Guaranteed Threshold	5.5	%	Guaranteed Threshold	

Attribute	Equivalence Value	Unit
Enrollment Cash	45.0	\$
Occurrence Cash	2.3	\$
Monthly Occurrence	1.5	Times
Lower Bound	8.5	%
Guaranteed Threshold	7.2	%


- 1. **Smaller** value indicates higher efficiency.
- 2. **Monetary** incentives are valued more in V2G than SMC.
- 3. **Guaranteed** threshold is more important in SMC than V2G, indicating range anxiety.
- 4. Attribute equivalencies can be used to inform incentive design.

SMC Scenario Analysis


- 1. **Flexibility** is highly valued.
- 2. **Recurring** incentives are more important than one-time.
- 3. Payment alone is not enough.

V2G Scenario Analysis

- 1. Still, **recurring** incentives are more important than one-time.
- 2. But **flexibility** is not as important compared with SMC.
- 3. Owners are willing to leverage BEV as a source of income.

Smart Charging Enrollment Simulator

Contributions

- 1. First **large N** study of BEV owners' preferences for smart charging programs.
- 2. Quantified the **sensitivity** of BEV owners' preferences for smart charging features.
- 3. Introduced the concept of attribute **equivalencies** to inform incentive design.

Appendix - SMC Logit Model

$$u_{j} = \beta_{1} x_{j}^{\text{enroll_cash}} + \beta_{2} x_{j}^{\text{monthly_cash}} + \beta_{3} \delta_{j}^{\text{override_allowed}} + \beta_{4} x_{j}^{\text{num_overrides}} + \beta_{5} x_{j}^{\text{min_threshold}} + \beta_{6} x_{j}^{\text{guaranteed_threshold}} + \beta_{7} \delta_{j}^{\text{no_choice}} + \epsilon_{j}$$

Attribute	Coef.	Est.	SE	Level	Unit
Enrollment Cash	β1	0.0031	0.0002	50, 100, 200, 300	USD
Monthly Cash	β2	0.0623	0.0027	2, 5, 10, 15, 20	USD
Override Days	Вз	0.1010	0.0118	0, 1, 3, 5	Days
Override Flag	β4	0.3622	0.0538	Yes, No	-
Minimum Threshold	β5	0.0037	0.0021	20, 30, 40	%
Guaranteed Threshold	β6	0.0362	0.0021	60, 70, 80	%
No Choice	β7	3.0026	0.1779	-	-

Appendix - V2G Logit Model

$$u_{j} = \beta_{1} x_{j}^{\text{enroll_cash}} + \beta_{2} x_{j}^{\text{occur_cash}} + \beta_{3} x_{j}^{\text{num_occurrences}} + \beta_{4} x_{j}^{\text{lower_threshold}} + \beta_{5} x_{j}^{\text{guaranteed_threshold}} + \beta_{6} \delta_{j}^{\text{no_choice}} + \epsilon_{j}$$

Attribute	Coef.	Est.	SE	Level	Unit
Enrollment Cash	β1	0.0045	0.0026	50, 100, 200, 300	USD
Occurrence Cash	β2	0.0863	0.0040	2, 5, 10, 15, 20	USD
Monthly Occurrence	Вз	0.1305	0.0217	1, 2, 3, 4	Times
Lower Threshold	β4	0.0237	0.0030	20, 30, 40	%
Guaranteed Threshold	β5	0.0278	0.0030	60, 70, 80	%
No Choice	β6	2.8759	0.2647	-	-

Reference List

- Huang, Bing, Aart Gerard Meijssen, Jan Anne Annema, and Zofia Lukszo. 2021. "Are Electric Vehicle Drivers Willing to Participate in Vehicle-to-Grid Contracts? A Context-Dependent Stated Choice Experiment." *Energy Policy* 156 (September): 112410. https://doi.org/10.1016/j.enpol.2021.112410.
- Philip, Thara, and Jake Whitehead. 2024. "Consumer Preferences Towards Electric Vehicle Smart Charging Program Attributes: A Stated Preference Study." Rochester, NY. https://doi.org/10.2139/ssrn.4812923.
- Wong, Stephen D., Susan A. Shaheen, Elliot Martin, and Robert Uyeki. 2023. "Do Incentives Make a Difference? Understanding Smart Charging Program Adoption for Electric Vehicles." *Transportation Research Part C: Emerging Technologies* 151 (June): 104123. https://doi.org/10.1016/j.trc.2023.104123.